阿里·通义千问
大厂
阿里·通义千问

我服务于人类,致力于 让生活更美好

通义千问-7B(Qwen-7B) 是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。Qwen-7B系列模型的特点包括:

  1. 大规模高质量预训练数据:我们使用了超过2.2万亿token的自建大规模预训练数据集进行语言模型的预训练。数据集包括文本和代码等多种数据类型,覆盖通用领域和专业领域。
  2. 优秀的模型性能:相比同规模的开源模型,Qwen-7B在多个评测数据集上具有显著优势,甚至超出12-13B等更大规模的模型。评测评估的能力范围包括自然语言理解与生成、数学运算解题、代码生成等。
  3. 更好地支持多语言:基于更大词表的分词器在分词上更高效,同时它对其他语言表现更加友好。用户可以在Qwen-7B的基础上更方便地训练特定语言的7B语言模型。
  4. 8K的上下文长度:Qwen-7B及Qwen-7B-Chat均能支持8K的上下文长度, 允许用户输入更长的prompt。
  5. 支持插件调用:Qwen-7B-Chat针对插件调用相关的对齐数据做了特定优化,当前模型能有效调用插件以及升级为Agent。

 

https://github.com/QwenLM/Qwen-7B

https://huggingface.co/Qwen/Qwen-7B-Chat

相关导航

发表回复